Blog ini berisi tentang tips, trick, sejarah, serta soal-soal latihan UN matematika SD, SMP, dan SMA (IPA,IPS) Tahun 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2011
Wednesday, May 30, 2012
Mengenal Macam-macam Bilangan dan Sifatnya
A. Macam-macam bilangan
1. Bilangan bulat
Bilangan bulat merupakan bilangan yang terdiri dari bilangan nol, bilangan positif, dan bilangan
negatife, contohnya: -3, -2 ,-1 , 0 , 1 , 2 , 3…. Dst
2. Bilangan asli
Bilangan asli merupakan suatu bilangan bulat positif yamg harus diawali dari angka1 (satu) hingga
tak terhingga, contohnya: 1, 2, 3, 4, 5…. Dst
3. Bilangan cacah
Bilangan cacah merupakan suatu bilangan bulat positif yang harus diawali dari angka 0 (nol)
hingga tak terhingga, contohnya: 0, 1, 2, 3, 4, 5…. Dst
4. Bilangan Prima
Bilangan prima merupakan suatu bilangan yang tepat punya 2 faktor, yaitu bilangan 1 (satu) dan
dengan bilangan itu sendiri, contohnya: 2, 3, 5, 7, 11, 13…. Dst
5. Bilangan Komposit
Bilangan komposit merupakan bilangan yang bukan 0 (nol), juga bukan 1, dan bukan juga bilangan
Prima, contohnya: 4, 6, 8, 9 , 10, 12, 14…. Dst
6. Bilangan Rasional
Bilangan Rasional merrupakan suatu bilangan yang dapat dinyatkan sebagai suatu pembagian
antara 2 bilangan bulat, contonya: ½, 2/3, ¾…. Dst
7. Bilangan Irrasional
Bilangan Irrasional merupakan bilangan yang nggak bisa dinyatkan sebagai pembagi dua bilangan
bulat, contohnya: √3, log 7….. Dst
8. Bilangan rill atau biasa disebut dengan bilangan nyata
Bilangan rill merupakan bilangan yang merupakan penggabungan dari bilangan rasional dan
Irrasional, contohnya: ½ √2, 1/3 √5, 2/3 log 2, dan seterusnya.
9. Bilangan Imajiner atau bilangan khayal
Bilangan imajiner merupakan bilangan yang ditandai dengan huruf i, Bilangan imajiner dengan
huruf i dapat dinyatakan sebagai √-1. Jadi apabila i = √-1 maka i2 = -1
contonya: √-8 = …. ?
√-8 = √8 x (-1) = √8 x √-1 = 4 x i = 2 i
10. Bilangan kompleks
bilangan kompleks merupakan suatu bilangan yangv merupakan penggabungan dari suatu
bilangan rill dan bilangan imajiner
contohnya: Log √-1 = log i
B. Sifat-sifat operasi dalam bilangan
1. Sifat komutatif atau sifat pertukaran
a + b = b + a atau a x b = b x a
2. Sifat asosiatif atau sifat pengelompokan
(a + b) + c = a + (b + c)
(p xq) x r = p x (q x r)
3. Sifat distributife atau sifat penyebaran
- Perkalian yang terjadi terhadap penjumlahan
( p + q) x r = (p x r) + (q x r)
- Perkalian yang terjadi terhadap pengurangan
( a - b) x c = (a x c) - (b x c)
- Pembagian yang terjadi terhadap penjumlahan
( p + b)/r= p/r + q/r
- Pembagian yang terjadi terhadap pengurangan
( a - b)/c = a/c - b/c
C. Pangkat atau eksponen
1. Pangkat bilangan bulat yang positif
Bentuk umum: An A = Bilangan pokok n = pangkat atau eksponen
Sifat pada pangkat bilangan bulat yang positif:
1. Am x An = Am + n
Contoh: 62 x 64 = 62+4 = 66
2. Am/An = Am - n
Contoh: 49/46 = 49-6 43
3. (P x Q)n = Pn x Qn
Contoh: (5 x 2)2 = 52 x 22
4. (P/Q)2 = P2/Q2
Contoh: ( 3/5)4 = 32
2. Pangkat bilangan bulat yang negative dan nol
1. P-n = 1/Pn
Contoh: 6-3 = 1/63 = 1/216
2. A0 = 1 syarat A ≠ 0
Contoh: 60 = 1
3. Pangkat pecahan
1. A1/n = n√A
Contoh: 51/3 = 3√5
2. Am/n = n√Am
Contoh: 52/4 = 4√52
sumber:adipedia.com
Labels:
Matematika
Subscribe to:
Post Comments (Atom)
thank you for sharing :) baca ini sebelum kuliah ^^
ReplyDeleteSaya masih gk ngerti bilangan imajiner. Bisa terangin yang lebih mudah!
ReplyDelete